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1 Summary

We have attacked the problem of optimally driving the level sets associated with the solution of
a Hamilton-Jacobi equation by relying on an approximation scheme based on the extended Ritz
method. The complete description of such an approach is illustrated in Section 2. In Section 3, we
will describe an approach to the control of the normal flow equation by using either velocity field
or source term. Such results are based on a different control paradigm as compared with that of
Section 2. More specifically, we deal with stabilizing feedback controllers, all provided with a proof
of stability.

Two experimental setups have been developed. The first one has been constructed in an indoor
laboratory. The main motivation to devote to this test rig was that of making students gain experience
with practice of level sets methods, as shown in Section 4. The second experimental setup is an airlift
photobioreactor, in which microalgae are used to capture CO2 from flue gas and to treat wastewater.
In Section 5, we will describe and motivate the role played by level set methods in such applications.

2 Optimal Control of Level Sets

First of all, we will define the problem and prove the existence of solutions. Second, we will describe
a suitable optimization method to find approximates solutions by using descent algorithms. Among
such methods, we will focus on a Gauss-Newton algorithm, which can be efficiently implemented by
using an extended Kalman filter (EKF). Finally, we will describe the simulation results.

Concerning the optimal control of level sets, we have attacked the problem by using the closed-
loop scheme depicted in Fig. 1. Since in general it is difficult to solve such a problem, an approxima-
tion scheme based on the extended Ritz method has been investigated proposed to find suboptimal
solutions. The control law is forced to take on a fixed structure that depends (in general nonlinearly)
on a finite number of parameters to be suitably chosen. Therefore, we have devised an approach for
the selection of the parameters by using gradient-based optimization techniques based on interior
point and sequential quadratic programming methods. Toward this end, the adjoint equation is
derived to compute the gradient of the cost functional with respect to the parameters of the control
law.

optimal
controller

level set
computation

Hamilton-Jacobi
PDE

velocity solution
input

output

Figure 1: Sketch of the proposed optimal closed-loop control.

We have proved the existence of solutions to the considered problem by choosing suitable spaces
of functions, where it is shown that the problem is well formulated under mild conditions and for
which the approximation results we rely on hold.
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x

Ω

Ω

φ(x, t)

∇φ(x, t){x ∈ Ω : φ(x, t) = 0}

Figure 2: Examples of fronts described by zero level sets.

2.1 Optimal control of level set dynamics

Given the space domain Ω ⊂ R
q and t ≥ 0, level set methods consider the front implicitly represented

at each time t as the zero level set of a function φ : Ω × [0, T ] → R, where T > 0 is a given time
horizon. The front x(t, s) corresponding to a level equal to c at time t is defined as the set of points
such that φ(x(t, s), t) = c, where s is the arc-length parameter of the initial curve x(0, s), as shown
in Fig. 3. If we differentiate with respect to t, we obtain the Hamilton-Jacobi equation

φt(x, t) + v(x, t) · ∇φ(x, t) = 0 , (1)

where

v(x, t) =
d

dt
x(t, s)

is the Lagrangian material particle velocity that gives the direction of propagation of the front at the
point x(t, s) and ∇ denotes the spatial gradient. Let us consider, for instance, the velocity v(x, t)
proportional to the normal to the front:

v(x, t) = u
∇φ(x, t)
|∇φ(x, t)| , (2)

where u is the propagation speed. If we replace the expression of v given by (7) in (6), we obtain the
so-called normal flow equation:

φt(x, t) + u |∇φ(x, t)| = 0, (3)

with initial conditions φ0 : Ω→ R that have to be fixed, i.e., φ(x, 0) = φ0(x), for all x ∈ Ω (a usual
choice is to take the signed distance to the initial front).

The behavior of the function φ in both space and time can be manipulated by a suitable choice of
u. In general, we may regard u as a control action depending on space and time, i.e., u : Ω× [0, T ]→
R. The level set control of (3) consists in choosing u(x, t) to move the propagating front described
by a level set of φ(x, t) as desired.

The evolution of the level sets of φ over time may be associated with a performance index that
depends on the boundary or on the interior of the shape (Alessandri, Bagnerini, and Gaggero, 2014).
In general, we consider the following cost measuring the performance of the control action u:

J(φ, u) =

∫ T

0

∫

Ω

h(φ(x, t), u(x, t), t) dx dt+

∫

Ω

h̄(φ(x, T )) dx, (4)

where h and h̄ are functionals defined on F ×U and F , respectively, with F and U denoting the sets
of the admissible functions φ(x, t) and u(x, t), respectively.
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We search for the optimal control action u◦ ∈ U that minimizes the cost functional J(φ, u)
subject to the normal flow equation (3), i.e.,

u◦ ∈ argmin
u∈U s.t. (3) holds

J(φ, u) . (5)

Unfortunately, it is almost impossible to find the exact analytic solution of (5), and therefore the
search for approximate solutions is mandatory in practice. However, before attacking the solution of
this problem, we need to prove that at least a solution exists, as shown in the sequel.

2.2 Existence of Solutions to the Optimal Control Problem

Let us consider a set Ω ⊂ R
q open, bounded, and smooth and the time t ∈ [0, T ], with T > 0. LS

methods represent a moving front or interface at each time t, i.e., a curve in two dimensions or a
surface in three dimensions separating two regions, as the zero LS of a multidimensional function
φ : Ω × [0, T ] → R. The interface x(t, s) is given at time t by the points such that φ(x(t, s), t) = 0,
where s is the arc-length parameter of the initial curve x(0, s). Figure 3 displays fronts at two
different time instants t1 and t2. By differentiating w.r.t. t, we obtain

φt(x, t) + v(x, t) · ∇φ(x, t) = 0 (6)

i.e., a Hamilton-Jacobi equation, where

v(x, t) :=
d

dt
x(t, s)

is the Lagrangian particle velocity giving the direction of propagation of the interface in the point
x(t, s) and∇φ(x, t) is the Fréchet gradient of φ(x, t) w.r.t. the space. If we choose v(x, t) proportional
to the normal to the front, i.e.,

v(x, t) = u
∇φ(x, t)
|∇φ(x, t)| (7)

where u is the speed of propagation and replace (7) in (6), we have the normal flow (NF) equation

φt(x, t) + u(x, t) |∇φ(x, t)| = 0 (8)

where the speed function u : Ω × [0, T ] → R is regarded as a control input and initial conditions
φ0 : Ω → R, i.e., φ(x, 0) = φ0(x), x ∈ Ω. Usually, φ0 is chosen as the signed distance to the initial
front. Equation (8) is a Hamilton-Jacobi equation, whose solution is defined in the sense of viscosity
solutions and it is based on the notion of sub- and super-differentials (Falcone and Ferretti, 2014).
The l ∈ R LS of the function φ is a set-valued mapping Γl : [0, T ] ⇒ C, where

Γl(t) := {x ∈ Ω : φ(x, t) = l} .

We deal with the problem of the optimal control of (8) for some cost functional to be minimized
that provides a performance index depending on the propagating front associated with a certain LS
of φ(x, t). Let us denote by U the set of admissible control functions (x, t) 7→ u(x, t) and by F the
space of functions (t, x) 7→ φ(x, t) where the problem is formulated. In the following, we properly
define U and F for the optimal control problem

inf
u∈U , φ∈F : (8) holds

J(u, φ) (9)

where J : U × F → R is a smooth cost functional.
DISTRIBUTION A:  Approved for public release, distribution unlimited



Ω
Ω

Ω

Ω

φ(x, t1)

φ(x, t2)

Γ0(t1) = {x ∈ Ω : φ(x, t1) = 0} Γ0(t2) = {x ∈ Ω : φ(x, t2) = 0}

Figure 3: Fronts described by the zero LSs of a multidimensional function φ at two different time
instants t1 and t2.

Let A ⊂ R
n be open and define

[u]1 := sup
x, y∈A, x 6=y

|u(x)− u(y)|
|x− y|

where u : A→ R. We denote the class of continuous functions and bounded continuous functions in
A by C0(A) and C0

b (A), respectively. Moreover, let

C0,1(A) :=
{

u ∈ C0
b (A) : [u]1 <∞

}

.

Then, (C0,1(A), ‖ · ‖1) is complete, where ‖u‖1 := ‖u‖∞ + [u]1, or, in other words, C0,1(A) endowed
with the norm ‖ · ‖1 is a Banach space (see, e.g., (Alessandri, Bagnerini, and Gaggero, 2013)). Note
that, if [u]1 < ∞, then [u]1 is just the smallest constant L such that |u(x) − u(y)| ≤ L |x − y|,
x, y ∈ A, i.e., u is uniformly Lipschitz. Moreover, since a Lipschitz function is uniformly continuous
and therefore continuously extendable to the boundary of its domain, it follows that

C0,1(A) = C0,1(A) .

Based on the aforesaid, the following propositions hold (Fornaro, Maniglia, and Metafune, 2004).

Proposition 1 If A is bounded, the immersion C0,1(A) →֒ C0(A) is compact, i.e., if (un)n∈N is
a sequence of functions in C0,1(A), there exists a subsequence (unk

)k∈N of (un)n∈N that converges
uniformly in A.

Proposition 2 Let (un)n∈N ∈ C0,1(A) be a sequence that converges uniformly to u and such that
[un]1 < c for some c > 0. Then u ∈ C0,1(A) and [u]1 < c.

Let us now consider (8), which is rewritten in the form of the more general Hamilton-Jacobi
equation

φt(x, t) +H(x, t,∇φ(x, t)) = 0 in Ω× (0, T ) (10)

where H(x, t, p) = u(x, t) |p| is the Hamiltonian function. Consider also initial conditions φ(x, 0) =
φ0(x) in Ω. In the following, we will focus on viscosity solutions “inside Ω” and viscosity supersolu-
tions in ∂Ω (Capuzzo-Dolcetta and P.L. Lions, 1990).
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Assumption 1 Let u ∈ C0(Ω× [0, T ]) such that u(x, t) > 0 for x ∈ N(∂Ω) and t ∈ [0, T ].1

Assumption 2 There exists L > 0 such that |u(x, t) − u(y, t)| ≤ L |x − y| for all x, y ∈ Ω and
t ∈ [0, T ].2

Assumption 3 There exists M > 0 such that |u(x, t1) − u(x, t2)| ≤ M |t1 − t2| for all x ∈ Ω and
t1, t2 ∈ [0, T ].3

Theorem 1 If φ0 ∈ C0(Ω), there exists a viscosity solution φ ∈ C0(Ω × [0, T ]) for (10) such that
φ(x, 0) = φ0(x) in Ω.

Proof. See (Capuzzo-Dolcetta and P.L. Lions, 1990, Theorem IV.2, p. 655) with all the required
assumptions satisfied since more restrictive conditions hold because of the specific choice of the
Hamiltonian function. Moreover, such a result states that φ is a viscosity supersolution on Ω×(0, T ).

�

It is worth noting that the viscosity solution φ ∈ C0(Ω×[0, T ]) is not unique in general. However,
it is the minimum viscosity supersolution v(x, t) of (10) on Ω × [0, T ] such that v(x, 0) ≥ φ0(x)
on Ω. Moreover, such a solution is Lipschitz w.r.t. x near ∂Ω, as it follows from the proof of
(Capuzzo-Dolcetta and P.L. Lions, 1990, Theorem IV.2, p. 655). In fact, Assumption 1 holds and
H(x, t, p)→ +∞ as |p| → +∞ uniformly for x ∈ N(∂Ω) and t ∈ [0, T ].

Let

F :=
{

φ ∈ C0(Ω× [0, T ]) : φ is Lipschitz on N(∂Ω)and a solution of (10)
}

and, for some a > 0,

U :=
{

u ∈ C0,1(Ω× [0, T ]) such that u(x, t) ≥ a , x ∈ N(∂Ω), t ∈ [0, T ]
}

.

As it will be clearer from what follows, U is the set of the admissible controls for a given cost
functional that satisfies the next assumption.

Assumption 4 Let J : U × F → [0,∞) such that J(·, s) : U → [0,∞) is lower semicontinuous for
s ∈ R.

Therefore, let us recast the problem (9) as follows:

inf
u∈U , φ∈F

J(u, φ) . (11)

1The positivity assumption in a neighborhood of ∂Ω allows one to rely on the existence of supersolutions in Ω
(Capuzzo-Dolcetta and P.L. Lions, 1990, Proposition II.2, p. 647).

2In principle, we may adopt a more general assumption, i.e., |u(x, t)−u(y, t)| ≤ ω(|x−y|), where ω : [0,∞)→ [0,∞)
is a continuous, nondecreasing, and subadditive function such that ω(0) = 0 (see (Capuzzo-Dolcetta and P.L. Lions,
1990, Assumption (H2), p. 648)).

3Likewise in Assumption 2, we may relax such assumption (see (Capuzzo-Dolcetta and P.L. Lions, 1990, eq. (36),
p. 655)).
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Theorem 2 There exists u∗ ∈ U such that

J(u∗, φ∗) = inf
u∈U , φ∈F

J(u, φ)

for some φ∗ ∈ F .

Proof. Since J is lower bounded, there exists a minimizing sequence (uk)k∈N for J in Ua. For every
k ∈ N, let Φk be a viscosity solution of

∂

∂t
Φk(x, t) + uk(x, t) |∇Φk(x, t)| = 0 in Ω× (0, T ) (12)

such that Φk(x, 0) = φ0(x), where Φk ∈ C0(Ω × [0, T ]) is Lipschitz on N(∂Ω). Since uk belongs to
U , from Propositions 1 and 2 it follows that there exists a subsequence of (uk)k∈N that uniformly
converges in Ω × [0, T ] to some u∗ ∈ C0,1(Ω × [0, T ]). To reduce the notational overhead and with
a little abuse of notation, we will denote such a subsequence with uk and so it will be also for other
sequences.

First of all, let us verify that u∗ belongs to U . Toward this end, notice that u∗(x, t) ≥ a for
x ∈ N(∂Ω) and t ∈ [0, T ]. Since for every ε > 0 there exists kε ∈ N such that, for k > kε, it follows
that u∗(x, t) > uk(x, t)− ε for (x, t) ∈ Ω× [0, T ], if x ∈ N(∂Ω) we obtain u∗(x, t) > a− ε. From the
arbitrariness of ε it follows u∗(x, t) ≥ a for x ∈ N(∂Ω) and t ∈ [0, T ] (from now on, we omit to recall
such a dependence on t for the sake of brevity).

Then, let us focus on (12), where uk is the subsequence converging to u∗ we considered before;
let us show that Φk ∈ C0(Ω× [0, T ]) converges to some φ∗ ∈ C0(Ω× [0, T ]) such that

∂

∂t
φ∗(x, t) + u∗(x, t) |∇φ∗(x, t)| = 0 in Ω× (0, T ) (13)

with φ∗(x, 0) = φ0(x) by passing to a subsequence if necessary. Owing to the structure of the
Hamiltonian H(x, t, p) in (10) (it is convex in p and such that H(x, t, p) tends to +∞ as |p| → +∞
uniformly for x ∈ N(∂Ω)), there exist α > 0 and β > 0 such that H(x, t, p) ≥ α|p| − β. From such
inequality and Assumption 3, it follows that ∇Φk is uniformly bounded w.r.t. k in some N(∂Ω).
Thus, using (13) we get that also Φk is uniformly bounded, and so there exists δ > 0 such that
‖Φk‖1 ≤ δ in some N(∂Ω). Using the arguments in (M.G. Crandall and P.L. Lions, 1985, Theorem
1, p. 385), it follows that an a-priori estimate of the modulus of continuity of Φk near ∂Ω propagates
in Ω. Hence, Φk is bounded in C0,1(Ω × [0, T ]) and, thanks to Propositions 1 and 2, it admits a
subsequence that uniformly converges to some φ∗, which is Lipschitz in some N(∂Ω). By passing
to a further subsequence if necessary, for uk and Φk, using (M.G. Crandall and P.L. Lions, 1986,
Theorem 1.4, p. 375), we obtain (13).

If Φk is a viscosity supersolution in Ω×(0, T ) and it is Lipschitz in N(∂Ω), then uk is Lipschitz in
Ω, Φk and uk admit subsequences that uniformly converge to φ∗ and u∗, φ∗ is a viscosity supersolution
in Ω × (0, T ) of (13). Therefore, we finally obtain that φ∗ belongs to F and, using (Kurdila and
Zabarankin, 2005, Proposition 7.1.2, p. 206) with Assumption 4, we get

J(u∗, φ∗) ≤ lim inf
k→+∞

J(uk,Φk)

which concludes the proof.
�
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2.3 EKF-based optimization

According to (Alessandri et al., 2014; Alessandri, Bagnerini, Gaggero, and Traverso, 2016b), we
rely on the ERIM to find approximations of the solution of (5) by replacing the control law with a
parametrized one and directly tuning its parameters to optimize the considered performance index.
For instance, a typical choice relies on constraining the control law to take on the form of a one-hidden-
layer feedforward neural network, whose weights have to be properly selected. The goal consists in
approximating the mapping (x, t) 7→ u◦(x, t) that solves the problem (5) by linear combinations of
parametrized basis functions (Barron, 1993; Kůrková and Sanguineti, 2002). According to the ERIM
paradigm, we impose

u(x, t) = γ(x, t, w) (14)

in the normal flow equation (3), where γ is the aforementioned parametrized control law and w ∈ R
m

is a vector of m parameters to be tuned. It is worth noting that, using (14), both φ and u become
functions of w, and therefore also the cost functional J turns out to depend on w. Thus, problem
(5) reduces to find the optimal weights wo that minimize the cost J , i.e.,

wo ∈ argmin
w∈Rm s.t. (3) and (14) hold

J(w). (15)

Problem (15) is a mathematical programming one that can be solved by gradient-based methods.
Toward this end, it is necessary to compute the gradient of J with respect to the parameters w with
(3) and (14) as constraints. In general, such a step is difficult due to the nonlinear dependence of
both J and γ on the parameters w. However, as proposed by Alessandri et al. (2014,1), it is possible
to find an analytic expression for the gradient of J by solving an adjoint equation. In the case of the
normal flow (3), the adjoint equation to be solved backward in time is the following (see (Alessandri
et al., 2016b) for the details):

{

−µt = (µγF1)x + (µγF2)y − hφ(φ, γ) in Ω×[0, T )
µ(x, T ) = −h̄φ(φ(x, T )) in Ω ,

(16)

where µ(x, t) is the Lagrange multiplier. Moreover,

F1 :=
φx

|∇φ| F2 :=
φy

|∇φ| .

By solving (16), we can obtain the expression for the gradient of the cost with respect to w:

∇wJ(φ, u) =

∫ T

0

∫

Ω

(

hu(φ, γ) + µ |∇φ|
)

∇wγ dx dt . (17)

When performing the search for the optimal weights, the initial guess of w may give rise to
different final results due to local minima that can affect (15), and therefore convergence to a global
optimum may be undermined. To overcome this difficulty, multistart techniques may be adopted.
They consists in repeating the optimization with different, randomly-chosen initial weights, and
selecting as the optimal ones those providing the smallest cost. Such an approach for the solution
of (15), referred to as “multistart optimization” in the following, is described in Algorithm 1, where
the number of initial guesses for the weights is denoted by L.

In the next section, we will present an alternative optimization approach based on the EKF to
mitigate the issue of local minima trapping, as it will be shown by means of simulations.

In learning from data it is often necessary to perform regression on input/output pairs {(zk, yk) , k =
0, 1, . . .}, where zk ∈ Z ⊂ R

p and yk ∈ Y ⊂ R by using a parametrized function ζ to approximate
the mapping zk 7→ yk, i.e., ỹk = ζ(zk, w), where ỹk ∈ Y is the approximation of yk, w ∈ R

m is a
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Algorithm 1 for the selection of the optimal weights

1: procedure multistart optimization

2: Inputs:
3: equations (3), (16), (17), and L
4: Outputs:
5: vector of the optimal parameters w◦

6: optimal cost J◦

7: Main loop:
8: J◦ ← +∞
9: for l from 1 to L do

10: generate a random initial choice of w0(l)
11: k ← 0
12: while (stopping criterion is not satisfied) do
13: u(x, t)← γ(x, t, wk(l))
14: solve the normal flow equation (3)
15: solve the adjoint equation (16)
16: compute the gradient (17)
17: wk+1(l)← descent step starting from wk(l)
18: k ← k + 1
19: end while

20: w◦(l)← wk(l)
21: J◦(l)← J(wk(l))
22: if (J◦(l) < J◦) then
23: J◦ ← J◦(l)
24: w◦ ← w◦(l)
25: end if

26: end for

27: end procedure

vector of parameters to be properly tuned, and Z and Y are compact sets (Ilin, Kozma, and Werbos,
2008).

In the following, we will focus on parametrized functions ζ that are of the same family of the
control law γ used in (14) to attack the optimal control of level sets with the ERIM. In practice, the
problem of finding the best value of the coefficients w may be recursively solved as a neural network
training one using the EKF, which can be regarded as the efficient application of the Gauss-Newton
method (Bertsekas, 1996). In this section, we motivate the use of this approach and adapt it to our
problem.

Following a large literature (see, e.g., (Alessandri, Cuneo, Pagnan, and Sanguineti, 2007; Iiguni,
Sakai, and Tokumaru, 1992; Mussa and Glen, 2010; Nishiyama and Suzuki, 2001; Schottky and Saad,
1999)), the learning from data based on the EKF can be stated as a nonlinear filtering problem with
system equations given by

wk+1 = wk (18a)

yk = ζ(zk, wk) + vk, (18b)

where k = 0, 1, . . .. It is implicitly assumed that the input/output pairs are generated by some
optimal vector of weights w∗ ∈ R

m, i.e., yk = ζ(zk, w
∗). Such optimal weights are unknown, and

they are estimated by using the simple state-augmented dynamics (18a), whereas (18b) represents
an output equation. The scalar quantity vk is regarded as a measurement noise, i.e., it is a random
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variable that accounts for the difference between yk and ζ(zk, wk). The estimate ŵk ∈ R
m of w∗ can

be computed by using the standard equations of the EKF, i.e.,

ŵk+1 = ŵk +Kk ( yk − ζ (zk, ŵk) ) k = 0, 1, . . . (19a)

with

Kk :=PkHk

(

H⊤
k PkHk + rk

)−1
(19b)

Pk+1 = Pk −KkH
⊤
k Pk , (19c)

where Pk ∈ R
m×m is a symmetric, positive definite matrix, Kk ∈ R

m, rk ∈ R denotes the covariance
of the measurement noise, and

Hk :=∇wζ(zk, ŵk) . (19d)

Of course, we have to initialize (19) with some guess of the initial weights ŵ0 and a symmetric,
positive definite matrix P0. It is known (see (Reif, Günter, Yaz, and Unbehauen, 1999)) that the
stability properties of the estimation error can be ensured only under the assumption of zero-mean,
random noises with finite covariance.

The application of (19) to the problem of level set control is not straightforward. In fact, in (19)
we assume to know the values of the output yk. In our context, the role of the output is played by
the optimal cost, which is unknown. The values of the cost corresponding to wk are the equivalent
of the mapping ζ . Thus, instead of (18b) we have

J(w◦) = J(wk) + vk,

where J(w◦) is unknown. In addition, since J(w◦) ≤ J(wk) for all wk ∈ R
m, the noise vk results

always to be nonpositive instead of having a mean equal to zero as previously discussed. This
motivates the introduction of a bias bk = J(w◦), which allows to model the lack of knowledge on
J(w◦) and it is estimated together with the optimal weights. Thus, instead of (18) we rely on the
following model:

wk+1 = wk (20a)

bk+1 = bk (20b)

0 = J(wk)− bk + vk, (20c)

where k = 0, 1, . . .. The computation of the gain Kk to apply the EKF is, mutatis mutandis, likewise
in (19). In other words, we perform an estimate of the optimal weights given by (19a) with a system
state (wk, bk) and gain Kk computed as in (19b) and (19c) with Pk ∈ R

(m+1)×(m+1), Kk ∈ R
m+1,

yk = 0, J(wk)− bk instead of ζ (zk, ŵk) in (19a), and

Hk :=

(

∇wJ(ŵk)
−1

)

.

In this way, the quantity −bk+vk has zero mean, and all the properties of the EKF hold. Since the ex-
act value of rk is unknown, we rely on the adaptive estimate proposed by Iiguni et al. (1992)[equation
(36), p. 962].

It is worth noting that classical results on bias estimation with the Kalman filter concerning the
reduction of computational effort (see (Caglayan and Lancraft, 1983; Keller and Darouach, 1999))
are not useful here, as the bias bk is just scalar as compared with the much larger dimension of
wk. By contrast, the comparison with the multistart method presented in Algorithm 1 as to both
computational demand and effectiveness of the optimization is fundamental.DISTRIBUTION A:  Approved for public release, distribution unlimited



Algorithm 2 for the selection of the optimal weights

1: procedure ekf-based optimization

2: Inputs:
3: equations (3), (16), (17), (19), and (20)
4: Outputs:
5: vector of the optimal parameters w◦

6: optimal cost J◦

7: Main loop:
8: generate a random initial choice of w0

9: k ← 0
10: while (stopping criterion is not satisfied) do
11: u(x, t)← γ(x, t, wk)
12: solve the normal flow equation (3)
13: solve the adjoint equation (16)
14: compute the gradient (17)
15: wk+1 ← EKF step (19) starting from wk

16: k ← k + 1
17: end while

18: w◦ ← wk

19: J◦ ← J(wk)
20: end procedure

The procedure to solve (15) by means of the EKF-based optimization is detailed in Algorithm 2.
Clearly, its main advantage as compared with Algorithm 1 is the computational saving, as it is not
required to repeat the random selection of the initial weights and run the optimization for each of
them. In fact, we will show by means of simulations in the next section that the optimization based
on the EKF is very robust to local minima trapping, and therefore only one guess for the initial
weights is enough to guarantee satisfactory results.

2.4 Simulation results

The effectiveness of the EKF-based optimization in comparison with the multistart optimization in
a complex tracking example involving a change of topology has been investigated by means of an
extensive simulation campaign. We have addressed the problem to find u(x, t) such that the zero
level set of the function φ(x, t) tracks a reference front φref(x, t). We have considered the following
cost measuring the difference between the reference and actual level sets:

J =

∫ T

0

∫

Ω

(

Ĥ(φ(x, t))−Ĥ(φref(x, t))
)2

dx dt, (21)

where Ĥ is a smooth approximation of the Heaviside step function (H(z) = 1 if z ≥ 0 and H(z) = 0
otherwise) proposed by Yang and Tomlin (2013) and given by

Ĥ(z) =
1

2
+

1

2
tanh

(z

τ

)

for a small value of τ (we fixed τ to 10−2).
The final time instant T has been chosen equal to 1.5 with a sampling time ∆t = 0.03, which cor-

responds to a total number of 50 time steps. The spatial domain Ω has been chosen as [−0.75,+0.75]×
[−0.5,+0.5]. The normal flow equation (3) and the corresponding adjoint equation (16) have been
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Figure 4: Front tracking snapshots obtained with the EKF-based optimization.

solved numerically on a regular Cartesian grid composed of 75×50 nodes using a second-order nu-
merical finite differences scheme both in space and time. Particular attention has been paid to the
discretization of the adjoint equation, especially as regards the boundary conditions. Since both
equations are of hyperbolic type, upwind approximations are used to avoid numerical instabilities.
For this purpose, we have performed spatial discretization by using an upwind second-order essen-
tially non-oscillatory (ENO) scheme (Kimmel, 2004, chap. 3). The time discretization is treated by
a second-order total variation diminishing Runge-Kutta scheme. The level set methods are handled
by using the Matlab toolbox by Mitchell (2008).

All the simulations have been performed on a personal computer equipped with a 2.6 GHz Intel
Xeon CPU and 64 GB of RAM. The multistart optimization relies on the routine fmincon of the
Matlab Optimization Toolbox by using the sequential quadratic programming algorithm and the
analytical expression (17) of the gradient of the cost. As regards the EKF-based optimization, we
have fixed the covariance matrix P0 of the initial weights equal to the identity matrix of size (m+1)×(m+1)
and the initial covariance of the measurement noise equal to 0.01. Such values have been found after
an experimental tuning with the aim of finding the ones providing the fastest convergence to the
optimal cost.

As regards the parametrized structure for the control law, we have focused on one-hidden-layer
feedforward neural networks with sigmoidal activation functions with 5 neurons. The reference curve
has been obtained with (3) by assigning u(x, t). In particular, we have adopted the following speed
for all x ∈ Ω and t ∈ [0, T ]:

u(x, t) =
1

4
| sin(πt)|x2

1 + 6x2
2. (22)

In order to obtain a value for the true optimal weights w∗, which will be useful to evaluate
the performances of the considered approaches, we have approximated the mapping (22) using the
Levenberg-Marquardt algorithm available in Matlab (function trainlm) with 5000 input/output pairs,
and we have extracted the weights from the resulting trained network.

For the sake of comparison, we have performed the optimization using both Algorithm 1 for the
multistart method and Algorithm 2 for the EKF learning starting from a total of L = 1000 different
initial values for the weights. Let us denote by w◦(l), l = 1, . . . , L, the weights at the end of the
optimization procedure with the l-th value of the initial weights. Then, we consider the distance
from the true optimal ones, i.e., w̃(l) := |w◦(l)− w∗|, l = 1, . . . , L. Furthermore, let J◦(l) and T (l)
be the optimal cost and the time needed to complete the optimization with the l-th value of the
initial weights for l = 1, . . . , L, respectively.

The results of the tracking obtained with the EKF-based optimization are shown in Fig. 4. It
turns out that the proposed approach has nice tracking capabilities. In fact, the reference curve is
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Figure 5: Boxplots of optimal cost, mean computational time, and distance from the optimal weights.

tracked with good accuracy, and also the change of topology occurring at the end of the simulation
horizon is correctly dealt with.

Fig. 5 shows the boxplots of the optimal cost J◦, of the time T needed to complete each
optimization, and of the distance w̃ computed over the considered 1000 different initial weights for
both the multistart optimization and the EKF-based one. Looking at the obtained results, we can
argue that both methods are reliable since the minimum values of the optimal costs are comparable.
However, the optimal costs of the multistart optimization are characterized by a large dispersion
around the median, whereas the costs of the EKF-based approach are all concentrated around the
median. This is due to the local minima trapping issue that affects the optimization with descent
methods such as the sequential quadratic programming. A large number of initial weights is required
to obtain a value of the weights providing satisfactory tracking capabilities. By contrast, few initial
guesses are enough if the EKF is used, as it is able to successfully escape from local minima most of
the times.

Concerning the computational overhead, the dispersion around the median of the optimization
time T for the multistart optimization is experienced to be quite large: the median is lower than the
corresponding one of the EKF since the stopping criteria of the optimization routine of the former
are rapidly satisfied when a local minimum is found. The property of local minima escaping of the
EKF is confirmed by the fact that the same time is needed to complete the optimization for almost
all the considered initial weights, as the stopping criteria are not satisfied after few iterations due to
the trapping into a local minimum.

A special discussion concerns the measure of the distance of the weights from the true optimal
ones, which si given by w̃. In this case, on the average the EKF-based optimization provides weights
that are far from the true optimal ones. However, all such weights correspond to low and similar
values of the cost. This behavior may be regarded as a confirmation of the presence of many global
minima in (15) that are far one from the other but all guarantee almost the same values of the cost
(Fukumizu and Amari, 2000; Sussmann, 1992).

To sum up, the EKF-based optimization turns out to be preferable with respect to the multistart
one in this example. In fact, its robustness to local minima trapping allows one to obtain savings
in the overall computational effort, as in general it is sufficient to start from a unique guess for the
initial weights to find “good” optimal ones. By contrast, the best number of trials in the multistart
optimization is not known a priori, as it may range from few ones in the most lucky cases to a large
number in the worst ones, thus making such an approach less appealing in practice.

3 Stabilizing Control of the Normal Flow Equation

Two control schemes for the NF equation have been devised. More specifically, consider the NF
equation

φt(x, t) + g(x, t) |∇φ(x, t)| = h(x, t) in Ω× [0,+∞) (23)
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where g : Ω × [0,+∞) → R and h : Ω × [0,+∞) → R are the velocity field and the source term,
respectively. First, we will consider (23) with control input given by the velocity field. For the sake of
brevity, we will refer to this case as “velocity field control,” or VFC for short. Then, we will focus on
(23) with control input represented by the source term, and we will call such a case as “source term
control,” or simply STC. In the following, we will investigate both approaches in detail, providing
rigorous proofs of stability. For the sake of brevity, we will present the proofs of stability to zero
though we may deal with tracking problems in general. Moreover, for the same reason from now on
we refer to the one-dimensional case, i.e., with Ω = [a, b] with a < b.

From now on, L2(Ω) denotes the Hilbert space of square integrable functions γ : Ω → R
q

with norm |γ|L2
=
(∫

Ω
|γ(x, t)|2dx

)1/2
<∞ for all t ≥ 0. H1(Ω) denotes the Sobolev space of square

integrable functions with square integrable first derivatives, i.e., H1(Ω) := {γ ∈ L2(Ω) : ∇γ ∈ L2(Ω)}.
If ϕ : Ω→ R is the equilibrium of a given PDE with initial condition φ0(x), the corresponding solution
φ(x, t) ∈ H1(Ω) is said to be

• L2 stable to ϕ(x) if for all ε > 0 there exists δε > 0 such that

|φ0 − ϕ|L2
< δε ⇒ |φ− ϕ|L2

< ε

for all t ≥ 0;

• L2 asymptotically stable to ϕ(x) if it is stable and

lim
t→+∞

|φ− ϕ|L2
= 0 ;

• L2 exponentially stable to ϕ(x) if there exists λ > 0 such that

|φ− ϕ|L2
≤ c |φ0 − ϕ|L2

exp(−λt) (24)

for some c > 0 and all t ≥ 0.

If, instead of the previous inequality, we have

|φ− ϕ|L2
≤ c exp(−λt)

without explicit dependence on |φ0 − ϕ|L2
, we will say that φ(x, t) converges exponentially to ϕ(x)

in L2 sense.

3.1 Control in the velocity field

Let us consider (23) with control input given by the velocity field g(x, t) and source term h(x, t)
equal to zero. In other words, we consider the following equation:

φt(x, t) + u(x, t) |φx(x, t)| = 0 (25)

where u(x, t) denotes the control input. To stabilize (25), we propose to use a feedback regulator as
follows:

u(x, t) = k φ(x, t) (26)

where k > 0 is a given coefficient. Such a choice guarantees the stability of the closed loop system,
as proved by the following theorem.

Theorem 3 System (25) subject to a proportional feedback law (26) with gain k > 0 is L2 stable to
zero.

Proof. See (Alessandri, Bagnerini, Gaggero, and Rossi, 2018d), based on standard Lyapunov argu-
ments (Mazenc and Prieur, 2011).

�

Note that in general the above theorem ensures only stability, but not asymptotic stability.
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3.2 Control in the source term

We consider the NF equation (23) with a fixed velocity field f(x, t) and a control input given by the
source term. In other words, instead of (25) we focus on the following equation:

φt(x, t) + f(x, t) |φx(x, t)| = u(x, t) (27)

where f : Ω × [0,+∞) → R is a known smooth, bounded function acting as velocity field. From
now on we suppose that f(x, t) > 0 for x ∈ Ω, t ∈ [0,+∞). Such assumption guarantees a coercive
Hamiltonian, which is a condition, among others, that is required to ensure the existence of solutions
for (27).

If we had at disposal the knowledge of the gradient of φ(x, t), it would be easy to set up a regulator
that stabilizes the system to zero. For example, we could choose u(x, t) = −k φ(x, t)+f(x, t) |φx(x, t)|.
In the absence of any knowledge on φx(x, t), we may construct a suitable observer-based control
scheme. More specifically, in the following firstly we will focus on a Luenberger observer for the
second term in the l.h.s. of (27), i.e., η(x, t) := f(x, t) |φx(x, t)|. Then, we will put such an observer
in the loop with the scope of compensating η(x, t) with a suitable estimate η̂(x, t) to impose a
stabilizing feedback.

In order to estimate η̂(x, t) := f(x, t) |φ̂x(x, t)|, we rely on a Luenberger observer

φ̂t(x, t) + f(x, t) |φ̂x(x, t)|+ ℓ (φ̂(x, t)− φ(x, t)) = u(x, t) (28)

where ℓ > 0 is the gain and φ̂(x, t) is the state of the observer.

Theorem 4 Observer (28) for system (27) provides an estimation error φ̃(x, t) :=φ(x, t) − φ̂(x, t)
that is L2 exponentially stable to zero if ℓ > 0 and φ̃(a, t) = φ̃(b, t) for all t ≥ 0.

Proof. The proof is reported in (Alessandri et al., 2018d). For the convenience of the reader, we
report a sketch of it.

The time derivative of the Lyapunov functional

V (t) =
1

2

∫

Ω

φ̃(x, t)2dx

is

V̇ (t) = −ℓ
∫

Ω

φ̃(x, t)2dx+

∫

Ω

f(x, t) φ̃(x, t)
[
∣

∣

∣
φ̂x(x, t)

∣

∣

∣
− |φx(x, t)|

]

dx . (29)

For the sake of brevity, let

Fφ(x, t) := f(x, t) φ̃(x, t)
[
∣

∣

∣
φ̂x(x, t)

∣

∣

∣
− |φx(x, t)|

]

.

Clearly, if

∫

Ω

Fφ(x, t)dx ≤ 0

from (29) we get V̇ (t) ≤ −ℓ V (t) and immediately conclude the proof. Toward this end, we note that

∫

Ω

Fφ(x, t)dx =

∫

{x∈Ω: φ̃(x,t) φ̃x(x,t)≥0}

Fφ(x, t) dx+

∫

{x∈Ω:φ(x,t) φ̃x(x,t)<0}

Fφ(x, t) dx . (30)
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The first term in the r.h.s. of (30) can be easily bounded by zero since f(x, t) is smooth and
bounded. Concerning the second term, the derivation of the same bound can be obtained by using
the assumption that f(x, t) is non negative. For the sake of space limitation, this proof is omitted.

�

Note that the condition φ̃(a, t) = φ̃(b, t) can be satisfied by choosing φ(x, t) = φ̂(x, t) on the
boundary.

Based on the estimate η̂(x, t) := f(x, t) |φ̂x(x, t)|, we can generate the control action

u(x, t) = −ℓ φ(x, t) + (ℓ− k) φ̂(x, t) + f(x, t)
∣

∣

∣
φ̂x(x, t)

∣

∣

∣
(31)

in such a way to stabilize the system, as follows.

Theorem 5 The state of system (27) subject to (31) with k > 0, ℓ > 0, and φ̃(a, t) = φ̃(b, t)
converges exponentially to zero in the L2 sense.

Proof (details can be found in (Alessandri et al., 2018d)). If we replace (31) in (28), we get φ̂t(x, t) =
−k φ̂(x, t) and hence, using the Lyapunov functional V (t) =

∫

Ω
φ̂(x, t)2dx/2, it is straightforward to

prove the L2 exponentially stability of φ̂(x, t) to zero. Since from the Young inequalities it follows

φ(x, t)2 = (φ̃(x, t) + φ̂(x, t))2 ≤ 2 φ̃(x, t)2 + 2 φ̂(x, t)2 ,

where φ̃(x, t) :=φ(x, t) − φ̂(x, t), we conclude on the L2 exponential convergence of φ(x, t) to zero
owing to the L2 exponentially stability of both φ̂(x, t) and φ̃(x, t) (from Theorem 4).

�

It is noteworthy that the special choice of k just equal to ℓ provides the simple observer-based
law

u(x, t) = −k φ(x, t) + f(x, t)
∣

∣

∣
φ̂x(x, t)

∣

∣

∣
(32)

In the next section, we will analyze the effectiveness of the proposed control schemes by means of
simulations.

3.3 Simulation results

In the following, we will show how the proposed approaches can steer a front to become another
given reference front. It is worth noting that the new, much simpler controllers permit to attain
similar results as compared with previous results on the optimal control of moving fronts associated
with the LS of a NF equation (Alessandri et al., 2014; Alessandri, Bagnerini, and Gaggero, 2016a;
Alessandri et al., 2016b).

A moving front is described by the zero LS of the function φ is given by the set-valued mapping
Γ : [0, T ] ⇒ C, where Γ(t) := {x ∈ Ω : φ(x, t) = 0}. We will construct regulators for (23) such that
Γ(t) tracks the reference front Γd := {x ∈ Ω : φd(x) = 0}, i.e., the zero LS of φd. Indeed, the proposed
approaches will allow to track the entire function φ and not only its zero LS. As a consequence, all
the LSs of φ will converge to the corresponding LSs of φd.

We focus on case studies involving VFC and STC problems with a two-dimensional NF equation
and different shapes of the reference curve given by the zero LS of the function φd(x). More specifi-
cally, we have considered a circle, two ellipses, and a star-shaped curve, denoted as “Case A”, “Case
B”, and “Case C”, respectively. In all the examples, we have fixed f(x, t) = 1 for the STC.

In all the cases, the NF equations (25) or (27) have bee solved on a spatial domain Ω =
[−0.5,+0.5] × [−0.75,+0.75], discretized by using a regular grid of 50 × 75 points. Concerning
the VFC approach, we have fixed a time interval [0, 1.5], discretized with sampling time ∆t equal
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Figure 6: Front tracking snapshots obtained with the VFC approach.

to 0.03, i.e., 50 time steps are required to complete the simulation. As regards the STC, we have
considered a time interval [0, 0.6] sampled with a total of 300 steps.

All the simulations have been performed in Matlab on a personal computer with a 2.6 GHz
Intel Xeon CPU with 64 GB of RAM. by using the Matlab toolbox of Mitchell (2008). An upwind
second-order essentially non-oscillatory scheme (Kimmel, 2004, chap. 3) with respect to the space
has been used for the numerical solution of the NF equations. Concerning the time approximation,
we have adopted a total variation diminishing Runge-Kutta scheme of second order.

Fig. 6 reports the snapshots of the fronts Γ(t) and Γd for the VFC approach. In more detail, the
results of the Cases A and C have been obtained with k = 20, while the plots of Case B refers to
k = 10000. Fig. 7 sketches the snapshots of the fronts Γ(t) and Γd for the STC approach. Specifically,
the results of the Cases A and C have been obtained with k = ℓ = 20, while the plots of Case B
refers to k = ℓ = 1000. In both the VFC and STC, the largest coefficient in the Case B is required
by the intrinsic difficulty of this example, which involves a change of topology.

To evaluate the performances, we introduce the quantity e(t), defined as the symmetric difference
between the actual front Γ(t) and the reference one Γd, i.e.,

e(t) =

∫

Ω

Γ(t) ∆ Γd dx

where ∆ is the symmetric difference operator, i.e., A ∆ B = (A∪B) \ (A∩B). Figs. 8 and 9 show
the time behavior of e(t) for the VFC and STC schemes, respectively.

It turns out that both the VFC and the STC are able to guarantee convergence to the reference
front Γd for all the considered shapes. The convergence speed of the VFC is higher than that of the
STC, as it is evident by checking Fig.s 8 and 9. In general, the STC requires larger values for the
parameter k to obtain convergence with respect to the VFC. Such a behavior is ascribed to the the
effect of the observer in the loop of the STC, whereas no estimator is required to control the fronts
with the VFC.
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Figure 7: Front tracking snapshots obtained with the STC approach.
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Figure 8: Time decrease of the error e for the VFC approach.

As said, both the VFC and STC methods ensure the convergence of the entire function φ and not
only its zero LS. As a consequence, all the LSs of φ converge to the corresponding LSs of φd. Fig.s
10 and 11 confirm this, as they display the snapshots of the functions φ(x, t) at certain time steps
and φd(x) for the VFC and STC approaches, respectively, in the first line and the corresponding LSs
in the second one for the Case C. Similar results could be shown for the Cases A and B, but they
are not reported for the sake of brevity.
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Figure 9: Time decrease of the error e for the STC approach.
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Figure 10: Snapshots of the functions φ(x, t) and φd(x) (first line) and corresponding LSs (second
line) for the VFC approach in the Case C.
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Figure 11: Snapshots of the functions φ(x, t) and φd(x) (first line) and corresponding LSs (second
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4 Laboratory setup for Identification and Control of Level

Sets Models

We have constructed a test rig allows to verify the effective capability to control the interface between
two fluids. Toward this end, we need to account for the physics of the process and develop a
suitable description of the interface. Unfortunately, the resulting model based on the cascade of the
physical setup based on Navier-Stokes equations and level sets turns out to be very computationally
demanding if one wants to use it for the purpose of optimal control during online operations.

Figure 12: Glass vessel, electronic package, and the complete setup.
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Thus, we have identified a black-box model of the cascade of Navier-Stokes and level set equations
by using nonlinear approximators such as neural networks. The goal is the fast computation of the
optimal control inputs in real time, without requiring the online numerical solution of a cascade of
two PDEs.

4.1 Modeling the experimental setup

The test rig is composed of a tank of water and ferrofluid under the effect of a matrix of driving
electromagnets. These electromagnets can change the magnetic field in order to modify the shape
of the ferrofluid. A ferrofluid is a liquid in which ferromagnetic nanoparticles are suspended in a
carrier liquid. Specifically, we focus on the case of a light polar mineral oil. The size of the particles
prevents their attraction since the inter-magnetic forces are low with respect to the surfactant’s Van
der Waals ones. The ferrofluid is mixed with a salt-saturated water solution that provides total
separation between the two fluids. The overall density is almost equal to the density of the single
components to avoid strong stratification. A wooden frame is used to keep the setup together with
a glass vessel to house the fluid and the electronic package to drive the magnets. A picture of the
used testbed is reported in Fig. 12.

The model is based on the following assumptions: (i) both fluids are in the liquid state, (ii)
both fluids are incompressible, and (iii) both fluids are Newtonian, i.e., their viscosity is independent
from the flow speed, and therefore it is possible to consider their viscosity constant if we assume
a constant temperature. Under these hypotheses, the fluid dynamics can be represented by the
following dimensionless incompressible 2D Navier-Stokes equations:

ut + px = −uux − vuy +
1

Re
(uxx + uyy) +

1

Fr2
gX (33a)

vt + py = −uvx − vvy +
1

Re
(vxx + vyy) +

1

Fr2
gY (33b)

ux + vy = 0 (33c)

where u and v are the x and y velocity components, respectively, p is the pressure, Re is the Reynolds
number, Fr is the Froude number, and gX and gY are the x and y acceleration field components,
respectively.

The momentum equations (33a) and (33b) describe the time evolution of the velocity field (u, v).
The incompressibility condition (33c) is not a time-dependent equation, but an algebraic condition.
If we consider p as a Lagrange multiplier, it is possible to obtain a new form of the Navier-Stokes
equations that is easier to solve numerically (Seibold, 2008b). Thus, we focus on the following
equations instead of (33):

ut + px = −(u2)x − (uv)y +
1

Re
(uxx + uyy) +

1

Fr2
gX (34a)

vt + py = −(v2)y − (uv)x +
1

Re
(vxx + vyy) +

1

Fr2
gY . (34b)

The acceleration field g is the resultant vector of the acceleration field gm caused by the magnetic
force acting on the ferrofluid and of the acceleration field gt caused by the interfacial tension. The
acceleration gm depends on the magnetic field B generated by 36 electromagnets that are arranged in
a 6× 6 grid. To compute the magnetic field generated by each electromagnet, we use the equations
proposed by Callaghan and Maslen (1960) and Derby and Olbert (2010). Then, the overall field
can be obtained from the field generated by each magnet using the classical superposition principle.
Specifically, let us collect in the vector a the current intensity of the various electromagnets. Thus,
the overall magnetic field B is a function of the vector a as follows:

B = h(a) (35)
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where, for details on the function h, we refer to (Callaghan and Maslen, 1960; Derby and Olbert,
2010).

To compute the force acting on each magnetic particle of the ferrofluid, we use the following
equation (Scherer and Figueiredo Neto, 2005):

Fm = ∇B · µ (36)

where µ is the magnetic moment of each particle. From Fm it is possible to obtain an approximate
value of gm. In fact, consider a small element of ferrofluid with volume Ve. Since the ferrofluid
behaves like a homogeneous fluid (Petit, Kedous-Lebouc, Avenas, Tawk, and Artega, 2011), the
force F acting on the entire element of ferrofluid is given by

Fm,e = npFm (37)

where np is the number of magnetic particles in the element. The acceleration gm is then computed
as

gm =
Fm,e

ρfVe
=

npFm

ρfVe
=

npµ

ρfVe
∇B (38)

where ρf is the ferrofluid density.
The interfacial tension, caused by unbalanced attractive forces (Ghosh, 2009), acts on the par-

ticles of water and ferrofluid near the interface. Specifically, the acceleration field gt caused by the
interfacial tension can be expressed as follows:

gt =
1

ρ
σκ δ(d)n (39)

where ρ is the fluid density, σ is the interfacial tension coefficient, κ is the curvature of the interface,
δ(d) is the Dirac δ function of the distance from the interface, and n is the normal versor to the
interface (Sethian, 1999).

The evolution of the interface between water and ferrofluid is taken into account through the
paradigm of level set methods. Thus, the interface is implicitly represented as the zero level set of a
multidimensional function φ(x(t), t), where x(t) is the position and t is the time. The evolution of φ
is determined by the following Hamilton-Jacobi equation (Mitchell, 2007):

φt +∇φ(x(t), t) · x′(t) = 0 (40)

where the velocity field x′(t) in (40) depends on the fluid dynamics of the system. Since the interface
is the zero level set of φ, the normal n can be obtained as

n =
φ

|∇φ| . (41)

Using the expression of the normal, we can compute the curvature κ in (39) as

κ = ∇ · n = ∇ · φ

|∇φ| (42)

whereas the distance from the interface d is given by

d =

∣

∣

∣

∣

φ

|∇φ|

∣

∣

∣

∣

. (43)

Combining (42), (43), and (41), we get the expression for gt as follows:

gt =
1

ρ
σκ(φ)δ

(

φ

|∇φ|

)

φ

|∇φ| . (44)

In the following, we will address the problem of computationally tractable, approximate description
of the model described so far.
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4.2 Offline model identification

The dynamic model presented in the previous section allows one to describe the evolution in space
and time of the interface between the water and the ferrofluid depending on the current intensity
of the different electromagnets. However, it is very computational demanding, as it requires the
numerical solution of two PDEs, i.e., the Navier-Stokes one and the level set Hamilton-Jacobi one
(40). Such a computational difficulty may be a severe issue if the model is used to generate optimal
control actions. Indeed, in this case it has to be executed several times to evaluate the effectiveness of
a given control input over the others. Clearly, this can undermine the feasibility of the computation
of optimal control actions on line.

Motivated by the desire of reducing the required computational effort, in this section we propose
a black-box approach based on neural networks to approximate the functional relationship between
the vector a and the evolution in time and space of the water-ferrofluid interface. More specifically,
it is possible to write the following:

φ = f(a, t) (45)

where f is a function that results from the application of the model (34)-(44). Unfortunately, the
analytic expression of f is unknown.

The idea is to approximate the unknown function f in (45) off line by using some nonlinear
approximation techniques, in order to be able to generate the mapping (a, t) 7→ φ almost instanta-
neously. In particular, the following procedure can be adopted off line:

• solve equations (34)-(44) for many different values of t and a and collect the corresponding
pairs given by (a, t) and the function φ;

• apply some learning method to approximate such pairs.

More specifically, let us denote the different values of t and a as t(i) and a(i), respectively, for i =
1, . . . , N , where N is the number of samples. Moreover, let φ(i), i = 1, . . . , N , be the corresponding
function φ in the l.h.s. of (45).

In order to find an approximation of the function f in (45), we constrain it to take on a certain
fixed structure given by

φ = γ (a, t, w) (46)

where γ is a parametrized function depending on the vector of parameters w ∈ R
p. By tuning the

values of such vector we can change the shape of the function γ. In our case, the goal is to search for
the optimal parameters that yield a “good” interpolation of the pairs (ã(i), φ(i)), i = 1, . . . , N , where
ã(i) := (a(i), t(i)).

Among the various alternatives for the approximating function γ in (46), we focus on one-hidden-
layer feedforward neural networks with sigmoidal activation functions. This choice is motivated by
the availability of a huge literature on their approximating capabilities and the presence of efficient,
ad-hoc developed algorithms software tools for the selection of the optimal parameters (Haykin,
2005). With this choice, in the case of scalar outputs the function γ has the following expression:

γ(ã, w) =
ν
∑

i=1

ci σ

(

n
∑

j=1

aij ãj + bi

)

+ c0

where ν is the number of neurons, ãj is the j-th component of ã, σ is a sigmoidal activation function,
c0, ci, bi ∈ R, and ai := col(ai1, . . . , ain) ∈ R

n, i = 1, . . . , ν. The vector of parameters to be optimized
is given by w = col(a⊤1 , . . . , a

⊤
ν , b1, . . . , bν , c0, . . . , cν). Their optimal value is usually found by solving

the following optimization problem corresponding to a mean square error criterion:

min
w∈Rp

N
∑

i=1

∣

∣φ(i) − γ(ã(i), w)
∣

∣

2
(47)DISTRIBUTION A:  Approved for public release, distribution unlimited



Figure 13: Initial condition of the simulations used to train the neural networks (green), example
of ferrofluid shape (blue), and example of reference shape (red). The symmetric difference between
the ferrofluid shape and the reference shape is given by the yellow area. The grey circles show the
positions of the electromagnets.

Concerning the theoretical properties of this kind of neural networks, it is known that they are
endowed with the universal approximation property, i.e., they are able to approximate with arbitrary
accuracy any “well-behaved” function. Moreover, they are particularly well-suited to dealing with
high-dimensional problems, as the number of parameters that are required to obtain satisfactory
approximations grows only polynomially with the dimension of the inputs. The interested reader is
referred to, e.g., (Barron, 1993; Zoppoli, Sanguineti, and Parisini, 2002) and the references therein
for a deeper discussion.

The procedure to find the optimal values of the parameter vector w in (47) is called “training”
in the neural network parlance, and a lot of efficient algorithms and corresponding software imple-
mentations exist in the literature, such as the classical backpropagation or Levenberg-Marquardt
methods.

4.3 Optimal control of the ferrofluid interface

Given a reference shape, our purpose is to find a configuration of the electromagnets such that the
ferrofluid is shaped as desired when the system has reached the steady state. In other words, we
want to find the optimal values of the vector a containing the current intensity of the electromagnets
so as to obtain desired shapes for the ferrofluid.

Toward this end, let us denote by Γd a reference shape for the ferrofluid, and let Γ be the actual
shape obtained at regime as the zero level set of the function φ that is the output of the neural network
as in (46). As measure of the distance between Γ and Γd, we adopt the symmetric difference, i.e.,
given two sets A and B, the symmetric difference is defined as A ∆ B = (A ∪ B) \ (A ∩ B). Thus,
we will use Γ ∆ Γd as an index of performance (see Fig. 13). Summing up, we have to solve the
following optimization problem:

a◦ = argmin
a∈R36

Γ ∆ Γd (48)

At least in principle, problem (48) could be solved with any optimization routine. However, in
this case the cost function does not change continuously with the input vector a. This is due to
the spatial discretization used to solve equations (34)-(44). As a consequence, it is not possible to
solve problem (48) using an optimization method that requires the computation of the gradient or
higher-order derivatives of the cost function. Thus, the use of nonderivative methods, such as direct
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Table 1: Results of the neural network training.

mean(∆s) mean(nc)

ν = 5 107.41 9.37
ν = 10 93.78 6.17
ν = 15 88.75 2.68
ν = 20 86.51 2.02
ν = 25 83.31 2.47
ν = 30 82.93 1.38

search ones, is mandatory (Bertsekas, 1999). Specifically, we will adopt a generalized pattern search
(GPS) algorithm.

To explain the principle of this algorithm, we show how it can be used to minimize a generic cost
function F (x) with x ∈ R

n. Let us consider xk at iteration k of the GPS algorithm, together with
mesh size ∆xk ∈ R

+. We evaluate F (x) in the points x+
k = xk ± ∆xk · ei, i ∈ {1, ..., n}. The set of

points x+
k is called pattern. The set of vectors ei must be a spanning set of Rn. We look for the x+

k ,
such that f(x+

k ) < f(xk), which gives the best result (minimum value of f(x+
k )). We denote such x+

k

by xo
k. If we find this xo

k, we set xk+1 = xo
k and ∆xk+1 = 2∆xk. Otherwise, if no xo

k is found, we set
xk+1 = xk and ∆xk+1 = ∆xk/2. This iteration continues until ∆k is smaller than a certain tolerance
value (Lewis and Torczon, 2000). Other stopping criteria may be adopted, such as the maximum
number of performed iterations, the maximum number of cost function evaluations, and time limits.

4.4 Simulation results

First of all, we present the numerical results related to the construction of the black box model, and
then we use it for the purpose of control.

To train the neural networks as described in Section 4.2, we need to collect the pairs (ã(i), φ(i))
for i = 1, . . . , N . Toward this end, we have solved 200 times the equations (34)-(44) starting from a
certain initial condition and with different configurations of the electromagnets. Specifically, we have
considered as spatial domain the rectangle [−3, 3] × [−3, 3]. As initial condition we have assumed
that the ferrofluid is in a circular shape, centered in (-1,-1) with radius 1.1, as shown in Fig. 13.
Concerning the current intensity of the electromagnets, without loss of generality we have assumed
that such intensity is restricted to take on three values, i.e., maximum one, half of the maximum,
and zero.

The numerical solution of the Navier-Stokes equations has been obtained by suitably adapting
the method proposed by Seibold (2008b) to take into account the characteristics of the model, i.e.,
the presence of two fluids with different physical properties and the effect of a magnetic force acting
on the ferrofluid and interfacial tension. The spatial discretization has been done on a staggered
grid, where u and v are placed on the vertical and horizontal cell sides, respectively, and p is in the
cell center. The discretization step has been chosen equal to 0.1. Concerning the time discretization,
we have selected a sampling time equal to 0.001. Furthermore, we have considered no-slip boundary
condition on each wall of the tank for u and v and homogeneous Neumann boundary conditions for
the pressure. As regards equation (40) modeling the evolution both in space and time of the interface
between water and ferrofluid, again we rely on the Matlab toolbox on level set methods developed
by Mitchell (2007).

The results of the 200 simulations described above have been saved at 50 different time steps.
Thus, having at disposal a set of N = 10000 pairs (ã(i), φ(i)), we have randomly divided such pairs
into two subsets made up by 8700 and 1300 elements, corresponding to the training set (i.e., the
pairs used to find the optimal values of the parameter vector w as in (47)) and the test set (i.e., the
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Figure 14: Examples of interfaces between water and ferrofluid obtained by solving equations (34)-
(44) and by applying the neural network approximations.

pairs used to verify the effectiveness of the trained networks), respectively.
Different neural networks have been trained using the implementation of the Levenberg-Marquardt

algorithm available in Matlab (function trainlm), corresponding to various numbers of neurons.
Specifically, we have chosen ν in the range from 5 to 30.

The performances of the networks have been evaluated by means of the following indexes, both
computed over the 1300 pairs of the test set (the average values are reported in Table 1):

• the symmetric difference ∆s between the area occupied by the ferrofluid as obtained by solving
(34)-(44) and the one provided by the neural network;

• the difference nc between the number of cells occupied by ferrofluid as obtained by solving
(34)-(44) and the one provided by the neural network.

From the results reported in Table 1, it turns out that the approximating capabilities of neural
networks increase with the number ν of neurons, as expected. In fact, lower values for the average
∆s can be observed. Fig. 14 shows two examples of the interfaces between water and ferrofluid at
certain randomly-extracted time steps as obtained by solving the system equations (34)-(44) and
provided by the neural networks with ν = 30 neurons. One can notice that the two interfaces are
similar, thus confirming the small value of the symmetric difference ∆s, i.e., the good approximating
capabilities of the trained neural networks.

To devise suitable control actions, we have solved problem (48) by using the mesh adaptive GPS
algorithm provided by the Matlab function patternsearch. More specifically, we have adopted the
neural network providing the best results in terms of accuracy, i.e., the network with ν = 30 neurons.
The regime is reached after t = 7 (t is the dimensionless time used in the Navier-Stokes equations).

The results obtained by using the black-box model have been compared with those provided by
the numerical solution of equations (34)-(44) over a set made up of 12 different reference shapes. The
results in terms of the symmetric difference ∆s and the time required to find a solution to problem
(48) are shown in Table 2. Fig. 15 contains the results of the control for the reference shapes 5 and
8. Similar results have been obtained for the other shapes, but they are not reported for the sake of
compactness.

It turns out that the black-box model allows one to save a huge amount of time as compared to the
application of the full system equations (34)-(44), at the price of only a slight decay of performance
on the average. In fact, an average decay of about 16% of the values of ∆s is experienced by using
neural networks, but a saving of the 99% of computing time is achieved.
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Table 2: Results of the optimal control approach.

System model Black-box model with ν = 30
Reference shape 1 2 3 4 5 6 7 8 9 10 11 12

∆s 94 242 236 189 169 121 94 86 111 248 217 158
Time [s] 590 668 800 600 622 648 616 623 640 628 640 631

System model Full system equations (34)-(44)
Reference shape 1 2 3 4 5 6 7 8 9 10 11 12

∆s 242 170 165 66 202 94 140 71 95 276 67 54
Time [h] 34 31 32 24 21 26 19 36 26 19 22 35

Figure 15: Results of the control actions for the reference shapes 5 (left) and 8 (right).
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5 Modeling an Airlift Reactor Process Using Level Sets

Since the seventies, airlift reactors (ALRs) have achieved a lot of success for microorganism growth
and cultured plant cells in general. A number of ALRs are employed in bioprocess engineering,
depending on the farmed species, from RNA (Ichii, Takehara, Konno, Ishida, Sato, Suzuki, and
Yamazumi, 1993) to ethanol production (Vicente, Dluhy, and Teixeira, 2009). Other important
fields of application are food industry (Hamada, Ishiyama, and Motai, 1989) and the the production
of drugs (Xu, Luo, and Yuan, 2011) and fragrances for cosmetics (Mihǎl, Gavin, and Markoš, 2013).
Biodegrading capabilities for wastewater treatment are another field of application (Cozma and
Gavrilescu, 2012). The need to process plastic residues has pushed research on bioplastics, where
ALRs allows to produce polyesters of hydroxyalkanoates (PHAs) as an alternative to petrochemical
polymers (da Silva, Antonio, Rossi, and Pena, 2014). ALRs have been investigated for microalgae
nurture to produce biofuels (Chisti, 2007) and/or CO2 sequestration (Sayre, 2010). In this specific
area of application, ALRs can be conveniently incorporated into biorefineries and integrated power
generation systems. In this context, we have studied the rising of gas bubbles in a pilot-scale external
loop airlift photobioreactor in which microalgae are used to capture CO2 from flue gas and to treat
wastewater. When biological reactants such as microalgae are used, the possibility to manipulate
the bubble flow regime during microalgae growth can increase the efficiency of the reactor. In this
application, the role that optimal control of level sets (LSs) can play appears to be really appropriate
with the goal to impose a process regime in which the average shapes and trajectories of the bubbles
are generated in such a way to maximize the efficiency of the reactor (see an example of such reactors
in Fig. 16).

Figure 16: Airlift reactor installed in the Savona Campus of the Genoa University.

5.1 Bubble dynamics in an airlift reactor

The study of the hydrodynamics of the multi-phase flow is crucial for the proper operation of ALRs.
The performances of the shape and trajectory of the bubbles in the riser may significantly affect the
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mass transfer between gas and microalgae and hence their own growth. To construct a model, we
have to account for two phenomena as well as their mutual influence: viscous fluid flow and moving
interfaces. Fluid flow can be described by Navier-Stokes equations, while interfaces are modelled
by using LSs. Toward this end, let us consider the local formulation of the Navier-Stokes equation,
obtained from momentum balance by resorting to the divergence theorem in conjunction with the
Reynolds transport theorem, (Batchelor, 2000; Chorin and Marsden, 1990):

ρ
Du(x, t)

Dt
= −∇p(x, t) +

(

ζ +
1

3
µ

)

∇ (∇ · u(x, t)) + µ∆u(x, t) + ξ(x, t) (49)

where ρ is the density of the fluid; u(x, t) is the velocity and Du(x, t)/Dt its material derivative; p(x, t)
is the pressure; µ is the dynamic viscosity; ζ is the volume viscosity (second viscosity coefficient);
ξ(x, t) accounts for body forces (per unit volume) such as the gravitational force.

The continuity equation holds for Newtonian, incompressible fluids and hence the velocity field
is a solenoidal vector field, i.e.,

∇ · u(x, t) = 0 .

Moreover, considering the gravitational force g(x, t) and hence ξ(x, t) = ρ g(x, t), we obtain

Du(x, t)

Dt
= −1

ρ
∇p(x, t) + g(x, t) +

µ

ρ
∆u(x, t) = −1

ρ
∇p(x, t) + g(x, t) + ν∆u(x, t) (50)

where ν :=µ/ρ is the kinematic viscosity. In order to get the nondimensionalized Navier-Stokes equa-
tion, let us denote by L, U , and G the characteristic length, characteristic speed, and gravitational
acceleration, respectively. Thus, let us define the non-dimensional variables

x∗ :=
x

L
u∗(x, t) :=

u(x, t)

U
g∗(x, t) :=

g(x, t)

G
p∗(x, t) :=

p(x, t)

ρU2

and hence it is straightforward to refer to a suitable time scale with

T :=
L

U

denoting the convective time. Based on such definitions, (50) can be rewritten as follows

Du∗(x, t)

Dt
= −∇∗p∗(x, t) +

g L

U2
g∗(x, t) +

ν

LU
∆∗u∗(x, t) (51)

where ∇∗ :=L∇ and ∆∗ :=L∆. Two well-known similarity numbers appear in such a model formu-
lation, i.e., the Reynolds and Froude numbers defined as follows:

Re :=
LU

ν
Fr :=

U√
gL

.

More specifically, from (51) we obtain

Du∗(x, t)

Dt
=

∂u∗(x, t)

∂t
+ u∗(x, t) · ∇∗u∗(x, t) = −∇∗p∗(x, t) +

1

Fr2
g∗(x, t) +

1

Re
∆∗u∗(x, t) . (52)

Based on the aforesaid, the link between the equations for the velocity field subject to (52) and
the interface tracking based on LSs is offered by the formulation of the physical properties of the
considered fluids as functions of φ(x, t). Toward this end, let us consider some smoothed Heaviside
function Hε such as

Hε(φ) :=















0 φ < −ε
1

2
+

φ

2ε
+

1

2
sin

(

πφ

ε

)

−ε ≤ φ ≤ ε

1 φ > ε
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where ε > 0 is a parameter affecting the numerical smearing and usually of the same order of
magnitude as the interface thickness (Osher and Fedkiw, 2003; Sharma, 2015).

Owing to the interface, we need to redefine the density ρ and kinematic viscosity ν of the two-
phase flow system of incompressible fluids as follows:

ρ = ρg + (ρl − ρg)Hε(φ)

ν = νg + (νl − νg)Hε(φ)

where the subscripts g and l tags refer to the gas and liquid phases, respectively. Another ingredient
to model multiphase flows is the surface tension force (per unit length), which will be denoted by
ξST. In the context of front-tracking methods, the most widespread way to take into account such
parameter is as a force concentrated on the interface (Brackbill, Kothe, and Zemach, 1992), i.e.

ξST = σκn

where σ is the coefficient of surface tension,

n(x, t) :=
∇φ(x, t)
|∇φ(x, t)|

is the normal to the moving interface, κ(x, t) :=∇ · n(x, t) is the curvature, and, for computational
purposes, the “mollified” delta function δε(φ) defined as the distribution derivative of Hε(φ) is used
instead of the Dirac delta δ(φ).

Thus, after adding the term of surface tension to (52) it follows that

∂u∗(x, t)

∂t
+u∗(x, t) ·∇∗u∗(x, t) = −∇∗p∗(x, t)+

1

Fr2
g∗(x, t)+

κ(x, t)n(x, t) δε(x, t)L
2

We
+

1

Re
∆∗u∗(x, t)

(53)
where

We :=
ρLU2

σ

is the Weber number. The resulting model is illustrated in Fig. 17.

5.2 Numerical schemes for simulation

zero level set
computation

Navier-Stokes
Equation

Level Set Equation

u(x, t)

φ(x, t)

∂Ω0 = {x ∈ Ω : φ(x, t) = 0}

Figure 17: Numerical simulation scheme.

The bidimensional non-dimensional Navier-Stokes equation is solved by employing Chorin’s pro-
jection on a marker-and-cell (MAC) staggered grid (see Fig. 18). The relative code is based on
the Navier-Stokes solver programmed by Seibold (2008a), which relies on a three-steps semi-implicit
scheme for time discretization (explicit treatment of the nonlinear convective term, implicit han-
dling of the diffusive term and pressure correction). The portion concerning the resolution of the
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Hamilton-Jacobi equation for displaying the zero LS can be instead developed by using Mitchell’s
toolbox (Mitchell, 2008) as a mold. Specifically, the spatial discretization is performed by the means
of an upwind second-order essentially non-oscillatory (ENO) scheme whilst time discretization is car-
ried out with a 3-steps, second-order total variation diminishing (TVD) Runge-Kutta scheme. The
choice of upwind approximations is motivated by the hyperbolic nature of the PDE, since in this
way numerical instabilities may be avoided. All the PDEs are treated by relying on finite difference
approximations.

The equations are numerically solved in the spatial domain Ω = [−dr/2, dr/2] × [−Lr/2, Lr/2],
where Lr is the length of the ALR riser, equal to 0.78 m, and dr is its diameter, equal to 0.11 m.
Ω is discretized to form a mesh grid of rectangular cells, made up of 300 nodes in each dimension.
Another possibility consists in focusing on the bottom section of the airlift reactor, with the diffuser
diameter (equal to the riser diameter) as the characteristic length. Since the collector diameter dc
is about half the riser diameter (dc = 0.05 m), in this case a square domain could better capture
both bubble shape modifications and initial behavior in the inlet section, where the diffuser is highly
influenced by the lateral collector.

Concerning the first instance, i.e., Ω as rectangular domain, the boundary conditions employed
to evaluate the velocity field are of the Dirichlet type. No-slip conditions are imposed on three sides
of the domain. The right-side wall, on the contrary, is modelled as to consider the inflow and outflow
determined by the presence of the horizontal collectors. Hence, in correspondence of the openings,
a noise-imposed, fairly flat profile velocity distribution typical of the turbulent fluid flow is adopted,
while no-slip conditions are used elsewhere.

p∗ u∗

x u∗

y

Figure 18: Staggered grid with boundary cells.

5.3 Simulations and validation

The ALR dimensions can be summarized as follows. As previously said, the riser has length and
diameter equal to 0.780 m and 0.110 m, respectively. For the same dimensions of downcomer, we
have 0.780 m and 0.050 m. The length and diameter of the horizontal collectors are 0.385 m and
0.050 m, respectively. Temperature, pressure, and NaCl pulse injection are taken equal 293 K, 3-4
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bar, and 1-10 g L−1, respectively. Other experimental variables are the gas velocity (0.57-0.64 m
s−1); liquid velocity in the riser (0.06-0.14 m s−1); liquid velocity in the downcomer (0.17-0.39 m
s−1). The minimum, average, and maximum diameters of the bubbles are equal to 0.003 m, 0.007 m,
0.020 m, respectively; the number of bubbles are in the range between 220 and 2800. The remaining
physical parameters have been chosen according to standard values: specific CO2 gas constant (188.9
J kg−1 K−1), CO2 surface tension coefficient (72.86 · 10−3 N m−1), water density (1000 kg m−3),
water dynamic viscosity (1.002 · 10−3 Pa s), and CO2 dynamic viscosity (1.47 · 10−5 Pa s)

In order to maximize mass transfer the maximum superficial area of exchange is required. Also, it
is self-evident that the longer the transport phenomenon lasts, the better. Referring this notion to the
problem under examination, this means that, in addition to requiring suitable forms of the bubbles,
it is also necessary to optimize their residence time in the riser or, in other words, to ensure that
appropriate trajectories are achieved. Hydrodynamics of multiphase flow thus holds a controlling
influence on mass transport phenomena. As long as the gas inlet velocity is maintained below a
threshold value, dependent on the tube geometry, bubbles rise almost individually without significant
interactions between them and with narrow bubble size distribution. In this flow condition, known
as bubble or homogeneous flow, values of the diameter of the bubble db (taken equal to the diameter
of a sphere having the same volume as the bubble) generally fall within the range 1-7 mm. The
ascent path is mostly rectilinear, with minor transverse and axial oscillations (Abdulmouti, 2014).
Whenever the gas phase velocity exceeds the aforementioned threshold, the density of the gaseous
fraction in the liquid gradually increases, resulting in a greater interaction between the bubbles,
with collisions, clusters formation and the occurrence of coalescence phenomena. The consequential
appearance of larger bubbles significantly alters the hydrodynamic scenario, with the concomitant
presence of large (more than 20 mm) and small bubbles. These latter bubbles rise rather fast (1-2
m s−1) stirring the liquid. The name of churn flow (also known as heterogeneous flow) is due to
the fact that the larger bubbles tend to churn up the liquid (Krishna and Baten, 2001). In this
state, as the corresponding Reynolds numbers prove to be higher, spiraling and zigzagging motions
can be observed. Moreover, due to this rather turbulent environment, large bubbles often do not
count on a clear definition of their form which rather fluctuates quite casually. Nevertheless, some
characteristic shapes can be identified, since the morphology of the bubbles is particularly a function
of the diameter, speed and properties of the system. The work carried out by Grace (173) produced
a well-known generalized graphical correlation (see Fig. 19) that depicts the individual geometry of
a single rising bubble in terms of three dimensionless numbers: Reynolds number, Eötvös number
(Eo), and Morton number (Mo), i.e.,

Eo =
g(ρl − ρg)d

2
b

σ
Mo =

gµ4
l (ρl − ρg)d

2
b

ρ2l σ
3

where µl is the viscosity of the liquid and the characteristic length required to compute Reynolds
number is db.

The diagram of Fig. 19 shows that the preferable shape is that of a spherical cap, given the
high ratio between the exchange surface and the occupied volume. Proceeding with the reasoning,
a zigzagging trajectory seems to be more suitable, as it would extend the permanence time of the
bubbles in the riser. The experimental survey reported bubbles having an average mean diameter of
7 mm with shapes that change from spherical, especially at the bottom of the riser (as it is to be
expected since the orifices from which gas is introduced are circular), to spherical caps. In Fig. 20
a snapshot of bubbles generated during one of an experimental test are shown. The computational
model has been developed by gradually increasing the complexity of the simulated system: at first
we have followed a single bubble, with the final aim of considering multiple puffs of bubbles inserted
in the domain at different times.

Owing to the well-known volume loss problem by which LS methods are intrinsically affected, it
has been necessary to introduce a correction apt to remedy such an issue. With a mere relocation of
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Figure 19: Grace’s diagram.

the LS function, lowered or raised according to need, using a simple algorithm based on the bisection
method, the simulation resulted more than satisfactory, as it can be noticed in Fig. 21.

Substantially, one can exploit the fact that, provided that the scheme for the convection of φ is
sufficiently accurate, the error on the volume balance in each time step should be very small. In order
to avoid the error accumulation, which instead leads to the significant observed losses, it is therefore
advisable to apply the correction at each time step, at the same time paying attention not to alter
the shape of the front. Presupposing a suitable rate of reinitialization of φ, in the proximity of the
front, the LS function is the signed distance and therefore, in the vicinity of its zero iso-contour line,
φ presents LSs approximately equidistant to each other. Then, by translating φ upward or downward
by a signed constant K, which represents the distance between the original LS and the one after the
translation, the volume (or area in two dimensions) occupied by the gas is conserved and the shapes
of the interfaces are essentially unaltered (Fig. 22).

In order for this method to be reliable, K must be small (Smolianski, 2001). The algorithm
counts the number of cells inside the interface at two successive times in order to judge if the latter
has increased or decreased and therefore if it is necessary to lower or raise the zero LS. The value of
K is expected to be between zero and the maximum of the zero LS, so to identify it, one possibility
is to use the bisection method within these two extremes.

Although the precaution of inserting a correction on the balance of front volume worked just
fine for the case of a single bubble, a further problem of distribution many occur in that of multiple
bubbles: the number of grid cells standing within the fronts is preserved but the lost cells are typically
added to the larger bubbles, without taking into account their position. The effect that follows is
a sort of instantaneous transfer of matter, obviously devoid of physical meaning. It is possible to
circumvent this issue as long as one simulates the evolution of multiple bubbles that begin their
walk at the same time and the frequency with which the correction is performed is suitably reduced,
as shown in Fig. 23. Nevertheless, since this route is not feasible, it is necessary to implement a
different approach. As a consequence, the adoption of the so-called conservative LS methods has
been adopted (Olsson and Kreiss, 2005; Olsson, Kreiss, and Zahedi, 2007).
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Figure 20: Formation of bubbles in the riser.

Figure 21: Simulation of a single bubble dynamic in the riser.
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Figure 22: Level set correction.

Figure 23: Simulation of an instantaneous puff behavior for a 5 bubbles flow inside the riser with
volume correction.
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6 Conclusions

Thanks to AFOSR, we have attacked difficult but challenging problems with novel ideas and working
together with a large number people. We have mixed theoretical understanding of such problems
and experimental activities, as shown with a large of publications. Three PhD students have been
involved in the project. Giulia Fabrini has got her PhD in June, 2017. Luca Mantelli is continuing his
second year of PhD and he is still working on the first test rig. Matteo Neviani’s PhD has concerned
the second experimental setup. He will defend his PhD within June 2019.

In the prospect of future investigation, the following goals will be considered to go on with the
job we are still completing to disseminate the large extent of experiences gained in these three years
of intensive work.

1. We have realized the importance that the control of level sets can play in the research area of
fluid control. We plan to investigate more and more the control of multiphase fluid systems
modeled by the Navier-Stokes equations, where very little can be found in the literature of
the research area of control theory. Indeed, there exists a large literature in the area of com-
putational fluid dynamics (CFD) concerning such topics but with a poor knowledge of pretty
well-established tools such as those based on convex optimization.

2. To bridge this gap, we would like to involve leading researchers in CFD. In relation also with
the previous observation, it is worth noting that very little can be found in the literature
that involve both control and CFD. For example, a simple check concerning the last American
Control Conference in Milwaukee shows that only 14 presentations over 1725 includes the
keyword CFD. This ratio is even worse in the case of the 57th IEEE Conference on Decision
and Control (held in Miami Beach, December 2018), where one can find the acronym CFD in
only 5 papers over 2063.

3. The control and estimation of parameter distributed systems is really a challenge, especially
when one has to deal with model described by nonlinear partial differential equations. More-
over, such systems are not sufficiently known in many areas of the industrial and mechanical
engineering, thus another goal may be that of building a laboratory aimed at bridging this gap
by making student interested to all the subjects related to parameter distributed systems and
industries fully aware of the competitive advantage achievable by investing in the research on
this topic.
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V. Kůrková and M. Sanguineti. Comparison of worst-case errors in linear and neural-network approximation. IEEE

Trans. Inf. Theory, 48(1):264–275, 2002.
J.Y. Keller and M. Darouach. Two-stage Kalman estimator with unknown exogenous inputs. Automatica, 35(2):

339–342, 1999.
R. Kimmel. Numerical Geometry of Images. Springer-Verlag, New York, 2004.
R. Krishna and J.M. Van Baten. Scaling up bubble column reactors with the aid of CFD. Chemical Engineering

DISTRIBUTION A:  Approved for public release, distribution unlimited



Research and Design, 79(3):283–309, 2001.
A.J. Kurdila and M. Zabarankin. Convex Functional Analysis. Birkhäuser Verlag, Basel, Switzerland, 2005.
R.M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization. SIAM Journal on Opti-

mization, 10(3):917–941, 2000.
F. Mazenc and C. Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathemat-

ical Control and Related Fields, 1(2):231–250, 2011.
M.G. Crandall and P.L. Lions. Hamilton-Jacobi equations in infinite dimensions I. Uniqueness of viscosity solutions.

J. Funct. An., 62(3):379–396, 1985.
M.G. Crandall and P.L. Lions. Hamilton-Jacobi equations in infinite dimensions II. Existence of viscosity solutions.

J. Funct. An., 65(3):368–405, 1986.
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